

Gerrit Teunissen,
General Manager
City Power,
Johannesburg,
South Africa

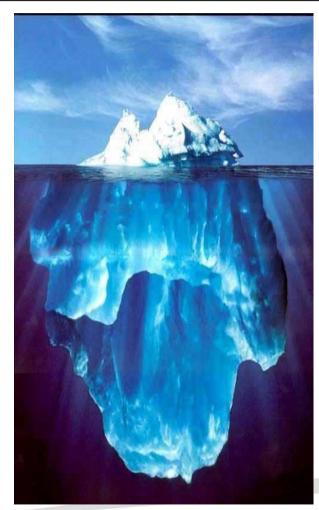
"How to justify and prioritise maintenance requirements throughout an organisation"

Presentation outline

- Background: What is MAINTENANCE?
- Maintenance Costs
- Financial Perspective
- Maintenance Methodologies
- Maintenance mix
- Condition Monitoring Techniques
- Determination of Risk Value
- Failures averted due to Condition Monitoring
- Requirements for maintenance execution
- Closure

What is MAINTENANCE?

- 1. General: Activities required to conserve as nearly, and as long, as possible the original condition of an asset or resource while compensating for normal wear and tear.
- 2. Accounting: Periodic cost incurred in activities that preserve an asset's operational status without extending its life. Maintenance is an expense that, unlike capital improvement (which extends an asset's life), is not capitalized.


What is MAINTENANCE?

3. Engineering: Actions necessary for retaining or restoring an equipment, machine, or system to the specified operable condition to achieve its maximum useful life. It includes corrective maintenance and preventive maintenance.

Maintenance Costs

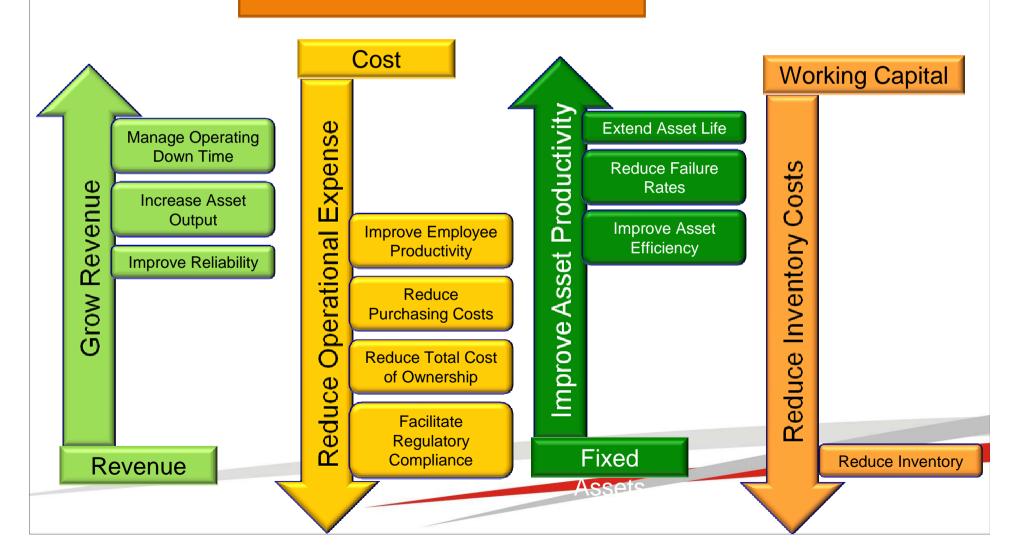
Maintenance costs = Direct costs + Indirect costs

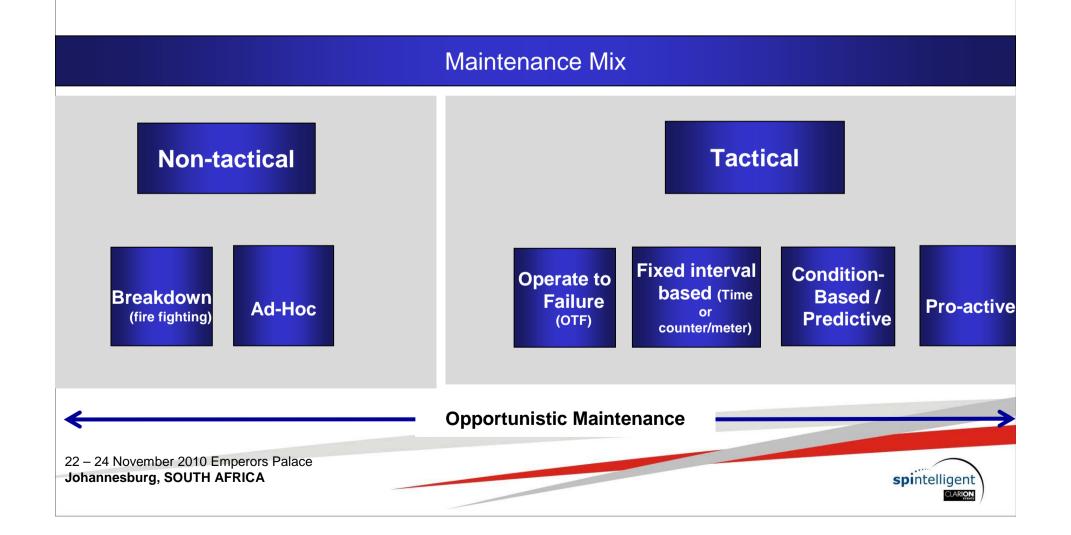
22 – 24 November 2010 Emperors Palace **Johannesburg, SOUTH AFRICA**

DIRECT

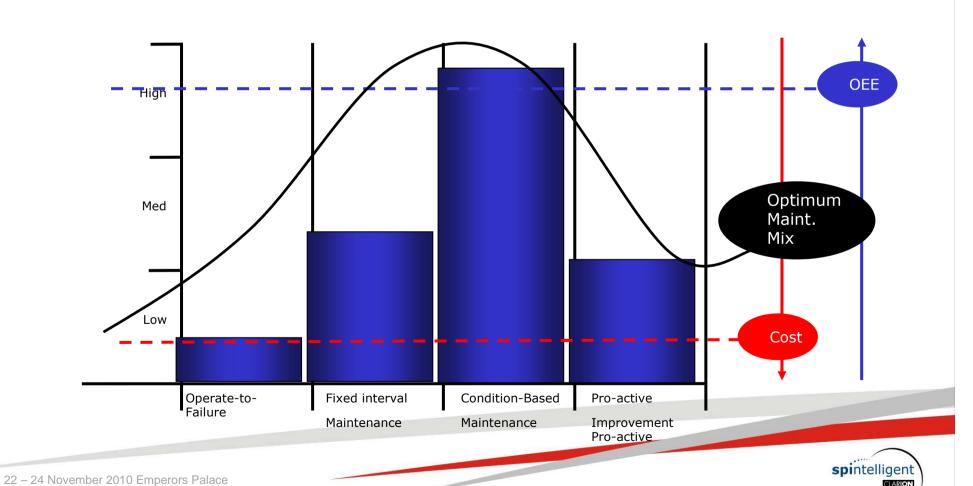
- Maintenance labour
- Spare parts
- Sub-contractor
- Transport

INDIRECT

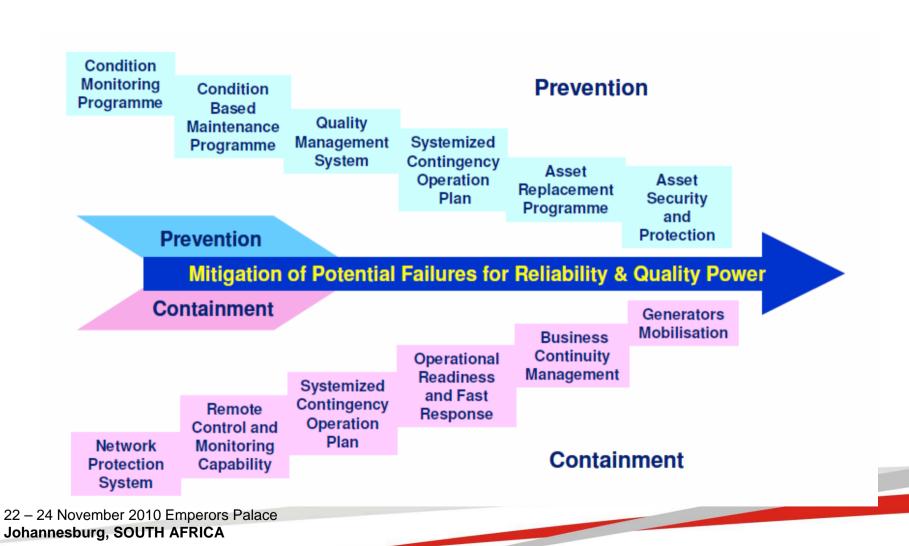

- Loss of revenue (lost sales)
- Increased spares holding (higher inventory carry costs)
- Re-work
- Unnecessary work (Secondary damage, etc)
- Increased scrap
- Extra capacity (network, personal and material)
- Increased overtime
- Increased customer dissatisfaction
- NRS 048 & 047 non-compliance
- Disposal costs
- Safety (accidents, liabilities, etc)



Financial Perspective of Asset Management


MAXIMIZE ROAM

Maintenance methodologies



Maintenance mix

Johannesburg, SOUTH AFRICA

Condition Monitoring Root Map

Determination of the Risk Value

Risk Level					Consequences			
Red = Extreme					Safety: Describe Negligible through to Disaster events			
Amber = High					Environmental: Describe Negligible through to Disaster events			
Yellow = Medium					Reputation : Describe Negligible through to Disaster events			
Green = Low					Financial: Describe Negligible through to Disaster costs			
Blue = Slight					Other: Describe Negligible through to Disaster events			
Likelihood of Event	Event Count po Year	er	Negligible	Minor	Important	Major	Severe	Disaster
			1	2	3	4	5	6
Certain	10	5	6	7	8	9	10	11
Almost Certain	1	4	5	6	7	8	9	10
Possible	0.1 (once in 10 yrs)	3	4	5	6	7	8	9
Rare	0.01 (once in 100 yrs)	2	3	4	5	6	7	8
Very Rare	0.001 (once in 1000 yrs)	1	2	3	4	5	6	7

Condition Monitoring Techniques

Condition Monitoring Systems	What they detect	Applied to	
Thermal Scanning	Overheating	Equipment	
Dissolved Gas Analysis	Abnormal oil contents	Equipment & cables	
Oil Pressure Monitoring	Low pressure	Cables	
Distributed Temperature Sensing	Hot spots	Cables	
Very Low Frequency Test	Low insulation	Cables	
Partial Discharge Monitoring	Minute current leakage	Equipment & cables	
Operating Mechanism Monitoring	Abnormal operation	Equipment	

POTENTIAL FAILURE FOUND AT A SUBSTATION

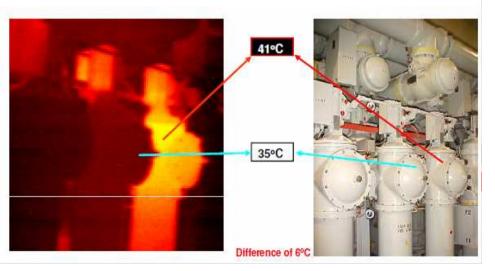
IN 88/11kV YARD ON TRANSMISSION

LOOSE CONNECTION CAUSED EXCESSIVE HEAT TERMINATION REPLACED

POTENTIAL FAILURE FOUND AT A SUBSTATION

MANY PREVIOUS FAULTS – MOSTLY FROM CABLE TERMINATION FAULTS PANEL NOT BEEN CLEANED ADEQUATELY LEADING SECONDARY FAULTS

POTENTIAL FAILURE FOUND AT A SUBSTATION



COMPOUND FILLED TERMINATION REPLACED WITH HEAT SHRINK INDEQUATE CLEARENCES AND CORE CROSSED

CONDITION MONITORING TECHNIQUES TO UTILIZED

- Ultrasonic, TEV monitors and Infrared camera – substations and overhead lines – on going
- Dissolved Gas Analysing and online monitors for transformers – on going
- Off load Partial Discharge(PD)
 diagnostic for cable systems being
 investigated
- Live PD detection for GIS and AIS switchgear – being investigated
- Leakage current monitors for surge arresters – being investigated

POTENTIAL FAILURE FOUND AT A SUBSTATION

PARTIAL DISCHARGE DETECTED ON VT AND REPLACEMENT CT'S NOT INSTALLED CORRECTLY OEM DESIGN PROBLEM AND POOR WORKMANSHIP

Requirements to ensure maintenance of an acceptable standard is performed

Funding: Sufficient funding should be made available – international benchmark: 5 to 7% of asset replacement value on an annual basis

Skills: The "Right Skills at the Right time doing the Right thing Right"

Material availability: Making sure the correct parts are available and are used – no short cuts!

Other factors to be considered

- History: Keep a data base of maintenance performed – this will give a cost overview as well as compliance to OHS act
- **Down time:** What impact will down time have? Can the work be done after hours?
- Maintenance Tactic: Have the maintenance work in a task list format – this will ensure standards are met within a specified timeframe

Conclusion

Thanks for listening and sweat the assets but don't drive them into the ground(red).

